Chapter 9: Virtual Memory Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames

Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples Operating System Concepts 9.2 Silberschatz, Galvin and Gagne 2005

Objectives To describe the benefits of a virtual memory system To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames To discuss the principle of the working-set model Operating System Concepts 9.3 Silberschatz, Galvin and Gagne 2005 Background

Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution Logical address space can therefore be much larger than physical address space Allows address spaces to be shared by several processes Allows for more efficient process creation Virtual memory can be implemented via:

Demand paging Demand segmentation Operating System Concepts 9.4 Silberschatz, Galvin and Gagne 2005 Virtual Memory That is Larger Than Physical Memory Operating System Concepts 9.5 Silberschatz, Galvin and Gagne 2005 Virtual-address Space

Operating System Concepts 9.6 Silberschatz, Galvin and Gagne 2005 Shared Library Using Virtual Memory Operating System Concepts 9.7 Silberschatz, Galvin and Gagne 2005 Demand Paging Bring a page into memory only when it is needed

Less I/O needed Less memory needed Faster response More users Page is needed reference to it invalid reference abort not-in-memory bring to memory Lazy swapper never swaps a page into memory unless page will

be needed Swapper that deals with pages is a pager Operating System Concepts 9.8 Silberschatz, Galvin and Gagne 2005 Transfer of a Paged Memory to Contiguous Disk Space Operating System Concepts 9.9 Silberschatz, Galvin and Gagne 2005 Valid-Invalid Bit With each page table entry a validinvalid bit is associated (v in-memory, i not-in-memory)

Initially validinvalid bit is set to i on all entries Example of a page table snapshot: Frame # valid-invalid bit v v v v i . i i page table

During address translation, if validinvalid bit in page table entry is I page fault Operating System Concepts 9.10 Silberschatz, Galvin and Gagne 2005 Page Table When Some Pages Are Not in Main Memory Operating System Concepts 9.11 Silberschatz, Galvin and Gagne 2005 Page Fault If there is a reference to a page, first reference to that page will trap to operating system: page fault

1. Operating system looks at another table to decide: Invalid reference abort Just not in memory page it in 2. Get empty frame 3. Swap page into frame 4. Reset tables 5. Set validation bit = v 6. Restart the instruction that caused the page fault Operating System Concepts 9.12 Silberschatz, Galvin and Gagne 2005 Pure Demand Paging

Pure demand paging: never bring a page into memory until it is required Costly if instruction references multiple addresses in several pages, but this is unlikely Locality of reference (later) helps Hardware support for demand paging: Page table (valid/invalid bits) Secondary memory: holds pages not present in main memory (e.g. high-speed disk, known as swap device with swap space)

Restarting an instruction (decoding, fetching, executing) may be costly Adding paging to an existing architecture to allow demand paging may be tricky if at all possible in some systems Operating System Concepts 9.13 Silberschatz, Galvin and Gagne 2005 Steps in Handling a Page Fault Operating System Concepts 9.14 Silberschatz, Galvin and Gagne 2005 Performance of Demand Paging

Page Fault Rate 0 p 1.0 if p = 0 no page faults if p = 1, every reference is a fault Effective Access Time (EAT) EAT = (1 p) x memory access + p x (page fault overhead + swap page out + swap page in + restart overhead ) Operating System Concepts 9.15 Silberschatz, Galvin and Gagne 2005

Demand Paging Example Memory access time = 200 nanoseconds Average page-fault service time = 8 milliseconds EAT = (1 p) x 200 + p (8 milliseconds) = (1 p x 200 + p x 8,000,000 = 200 + p x 7,999,800 If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds. This is a slowdown by a factor of 40 because of demand paging !! Operating System Concepts

9.16 Silberschatz, Galvin and Gagne 2005 Process Creation Virtual memory allows other benefits during process creation: - Copy-on-Write - Memory-Mapped Files (later) Operating System Concepts 9.17 Silberschatz, Galvin and Gagne 2005 Copy-on-Write Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory If either process modifies a shared page, only then is the page copied

COW allows more efficient process creation as only modified pages are copied Free pages are allocated from a pool of zeroed-out pages (technique known as zero-fill-on-demand) vfork() on some UNIX systems: child uses parents address space without COW tricky! good for UNIX command-line shell interfaces, especially if exec() is called immediately after the fork. Operating System Concepts 9.18

Silberschatz, Galvin and Gagne 2005 Before Process 1 Modifies Page C Operating System Concepts 9.19 Silberschatz, Galvin and Gagne 2005 After Process 1 Modifies Page C Copy of page C Operating System Concepts 9.20 Silberschatz, Galvin and Gagne 2005 What happens if there is no free frame?

Page replacement find some page in memory, but not really in use, swap it out Algorithm to select victim frame (if no free frames exist) performance want an algorithm which will result in minimum number of page faults Same page may be brought into memory several times Operating System Concepts 9.21 Silberschatz, Galvin and Gagne 2005 Page Replacement

Prevent over-allocation of memory by modifying page-fault service routine to include page replacement Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk Page replacement completes separation between logical memory and physical memory large virtual memory can be provided on a smaller physical memory Operating System Concepts 9.22 Silberschatz, Galvin and Gagne 2005 Need For Page Replacement Operating System Concepts

9.23 Silberschatz, Galvin and Gagne 2005 Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select a victim frame; write victim frame to disk, update page & frame tables 3. Bring the desired page into the (newly) freed frame; update the page and frame tables 4.

Restart the process Operating System Concepts 9.24 Silberschatz, Galvin and Gagne 2005 Page Replacement Operating System Concepts 9.25 Silberschatz, Galvin and Gagne 2005 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular

string of memory references (reference string) and computing the number of page faults on that string In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 Operating System Concepts 9.26 Silberschatz, Galvin and Gagne 2005 Graph of Page Faults Versus The Number of Frames Operating System Concepts 9.27 Silberschatz, Galvin and Gagne 2005 FIFO Page Replacement

Operating System Concepts 9.28 Silberschatz, Galvin and Gagne 2005 First-In-First-Out (FIFO) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 3 frames (3 pages can be in memory at a time per process) 1 1 4

5 2 2 1 3 3 3 2 4 1 1 5

4 2 2 1 5 3 3 2 4 4 3 9 page faults

4 frames 10 page faults Beladys Anomaly: more frames more page faults Operating System Concepts 9.29 Silberschatz, Galvin and Gagne 2005 FIFO Illustrating Beladys Anomaly Operating System Concepts 9.30 Silberschatz, Galvin and Gagne 2005 Optimal Algorithm

Replace page that will not be used for longest period of time 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 1 4 2 6 page faults 3 4 5 How do you know this?

Used for measuring how well your algorithm performs Operating System Concepts 9.31 Silberschatz, Galvin and Gagne 2005 Optimal Page Replacement Operating System Concepts 9.32 Silberschatz, Galvin and Gagne 2005 Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 1

1 1 1 5 2 2 2 2 2 3 5 5

4 4 4 4 3 3 3 Counter implementation Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter When a page needs to be changed, look at the counters to

determine which are to change Operating System Concepts 9.33 Silberschatz, Galvin and Gagne 2005 LRU Algorithm (Cont.) Stack implementation keep a stack of page numbers in a double link form: Page referenced: move it to the top

requires 6 pointers to be changed No search for replacement Operating System Concepts 9.34 Silberschatz, Galvin and Gagne 2005 LRU Page Replacement Operating System Concepts 9.35 Silberschatz, Galvin and Gagne 2005 Use Of A Stack to Record The Most Recent Page References Operating System Concepts 9.36

Silberschatz, Galvin and Gagne 2005 LRU Approximation Algorithms Reference bit With each page associate a bit, initially = 0 When page is referenced bit set to 1 Replace the one which is 0 (if one exists) We do not know the order, however Second chance

Need reference bit Clock replacement If page to be replaced (in clock order) has reference bit = 1 then: Operating System Concepts set reference bit 0 arrival time reset to current time

leave page in memory replace next page (in clock order), subject to same rules Circular queue used 9.37 Silberschatz, Galvin and Gagne 2005 Second-Chance (clock) Page-Replacement Algorithm Operating System Concepts 9.38 Silberschatz, Galvin and Gagne 2005 Counting Algorithms

Keep a counter of the number of references that have been made to each page LFU Algorithm: replaces page with smallest count MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used Neither algorithm is common: implementation is expensive they do not approximate OPT replacement well

Operating System Concepts 9.39 Silberschatz, Galvin and Gagne 2005 Allocation of Frames Each process needs minimum number of pages Example: IBM 370 6 pages to handle SS MOVE instruction: instruction is 6 bytes, might span 2 pages

2 pages to handle from 2 pages to handle to Two major allocation schemes Equal allocation Proportional allocation Operating System Concepts 9.40 Silberschatz, Galvin and Gagne 2005 Allocation of Frames

Equal allocation For example, if there are 100 frames and 5 processes, give each process 20 frames. Proportional allocation Allocate according to the size of process si size of process pi S si m total number of frames s ai allocation for pi i m S m 64 s1 10 s2 127 10 a1 64 5 137 127 a2 64 59 137

Operating System Concepts 9.41 Silberschatz, Galvin and Gagne 2005 Priority Allocation Use a proportional allocation scheme using priorities rather than size If process Pi generates a page fault, select for replacement one of its frames; or select for replacement a frame from a process with lower priority number

Operating System Concepts 9.42 Silberschatz, Galvin and Gagne 2005 Global vs. Local Allocation Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another Local replacement each process selects from only its own set of allocated frames Operating System Concepts 9.43 Silberschatz, Galvin and Gagne 2005

Thrashing If a process does not have enough pages, the page-fault rate is very high. This leads to: low CPU utilization operating system thinks that it needs to increase the degree of multiprogramming another process added to the system Thrashing a process is busy swapping pages in and out

A process is thrashing if it is spending more time paging than executing! Operating System Concepts 9.44 Silberschatz, Galvin and Gagne 2005 Thrashing (Cont.) Operating System Concepts 9.45 Silberschatz, Galvin and Gagne 2005 Demand Paging and Thrashing Why does demand paging work? Locality model

A locality is a set of pages that are actively used together A program is generally composed of several localities Process migrates from one locality to another Localities may overlap Example of locality: a function; when function exists, process leaves this locality Why does thrashing occur? size of locality > total memory size

Operating System Concepts 9.46 Silberschatz, Galvin and Gagne 2005 Locality In A Memory-Reference Pattern Operating System Concepts 9.47 Silberschatz, Galvin and Gagne 2005 Working-Set Model working-set window a fixed number of page references Example: 10,000 instruction WSSi (working set of Process Pi) =

total number of pages referenced in the most recent (varies in time) if too small will not encompass entire locality if too large will encompass several localities if = will encompass entire program D = WSSi total demand for frames m = total number of available frames

if D > m Thrashing Policy if D > m, then suspend one of the processes Operating System Concepts 9.48 Silberschatz, Galvin and Gagne 2005 Working-set model = 10 -- WS changes with time -- WS is, therefore, an approximation of a programs locality Operating System Concepts 9.49 Silberschatz, Galvin and Gagne 2005

Keeping Track of the Working Set Approximate with interval timer + a reference bit Example: = 10,000 Timer interrupts after every 5000 time units Keep in memory 2 bits for each page Whenever a timer interrupts copy and sets the values of all reference bits to 0 If one of the bits in memory = 1 page in working set

Why is this not completely accurate? Improvement = 10 bits and interrupt every 1000 time units Becomes more costly Operating System Concepts 9.50 Silberschatz, Galvin and Gagne 2005 Page-Fault Frequency Scheme Establish acceptable page-fault rate

If actual rate too low, process loses frame If actual rate too high, process gains frame Operating System Concepts 9.51 Silberschatz, Galvin and Gagne 2005 Memory-Mapped Files Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory A file is initially read using demand paging. A page-sized portion of the file is read from the file system into a physical page. Subsequent reads/writes to/from the file are treated as ordinary

memory accesses. Simplifies file access by treating file I/O through memory rather than read() write() system calls Also allows several processes to map the same file allowing the pages in memory to be shared Operating System Concepts 9.52 Silberschatz, Galvin and Gagne 2005 Memory Mapped Files Operating System Concepts 9.53

Silberschatz, Galvin and Gagne 2005 Memory-Mapped Shared Memory in Windows Operating System Concepts 9.54 Silberschatz, Galvin and Gagne 2005 Allocating Kernel Memory Treated differently from user memory Many operating systems do not subject kernel code or data to the paging system Kernel must use memory conservatively to reduce waste

Often allocated from a free-memory pool Kernel requests memory for structures of varying sizes Some kernel memory needs to be contiguous (e.g. for hardware devices with memory-mapped I/O) Operating System Concepts 9.55 Silberschatz, Galvin and Gagne 2005 Buddy System Allocates memory from fixed-size segment consisting of physicallycontiguous pages

Memory allocated using power-of-2 allocator Satisfies requests in units sized as power of 2 Request rounded up to next highest power of 2 When smaller allocation needed than is available, current chunk split into two buddies of next-lower power of 2 Continue until appropriate sized chunk available Advantage: adjacent buddies can be combined to form larger segments (coalescing)

Disadvantage: fragmentation within allocated segments Operating System Concepts 9.56 Silberschatz, Galvin and Gagne 2005 Buddy System Allocator Operating System Concepts 9.57 Silberschatz, Galvin and Gagne 2005 Slab Allocator Alternate strategy Slab is one or more physically contiguous pages

Cache consists of one or more slabs Single cache for each unique kernel data structure Each cache filled with objects instantiations of the data structure When cache created, filled with objects marked as free When structures stored, objects marked as used If slab is full of used objects, next object allocated from empty slab

If no empty slabs, new slab allocated Benefits include no fragmentation, fast memory request satisfaction Operating System Concepts 9.58 Silberschatz, Galvin and Gagne 2005 Slab Allocation Operating System Concepts 9.59 Silberschatz, Galvin and Gagne 2005 Other Issues -- Prepaging

Prepaging To reduce the large number of page faults that occurs at process startup Prepage all or some of the pages a process will need, before they are referenced But if prepaged pages are unused, I/O and memory was wasted Assume s pages are prepaged and a fraction of these pages is actually used: Is cost of s * saved page faults > or < than the cost of prepaging s * (1- ) unnecessary pages?

near 0 prepaging loses near 1 prepaging wins Operating System Concepts 9.60 Silberschatz, Galvin and Gagne 2005 Other Issues Page Size There is no single best page size Page size selection must take into consideration:

fragmentation table size I/O overhead Locality Fragmentation & locality argue for small page size Table size & I/O overhead argue for large page size Operating System Concepts

9.61 Silberschatz, Galvin and Gagne 2005 Other Issues TLB Reach TLB Reach - The amount of memory accessible from the TLB TLB Reach = (TLB Size) X (Page Size) Ideally, the working set of each process is stored in the TLB Increase the Page Size

Otherwise there is a high degree of page faults This may lead to an increase in fragmentation as not all applications require a large page size Provide Multiple Page Sizes This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation Operating System Concepts 9.62 Silberschatz, Galvin and Gagne 2005 Other Issues Program Structure Program structure

Int[128,128] data; Each row is stored in one page Program 1 for (j = 0; j <128; j++) for (i = 0; i < 128; i++) data[i,j] = 0; 128 x 128 = 16,384 page faults Program 2 for (i = 0; i < 128; i++) for (j = 0; j < 128; j++) data[i,j] = 0; 128 page faults Operating System Concepts

9.63 Silberschatz, Galvin and Gagne 2005 Other Issues I/O interlock I/O Interlock Pages must sometimes be locked into memory Consider I/O - Pages that are used for copying a file from a device must be locked from being selected for eviction by a page replacement algorithm Operating System Concepts 9.64 Silberschatz, Galvin and Gagne 2005 Reason Why Frames Used For I/O Must Be In Memory

Operating System Concepts 9.65 Silberschatz, Galvin and Gagne 2005 Operating System Examples Windows XP Solaris Operating System Concepts 9.66 Silberschatz, Galvin and Gagne 2005 Windows XP

Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page. Processes are assigned working set minimum and working set maximum Working set minimum is the minimum number of pages the process is guaranteed to have in memory A process may be assigned as many pages up to its working set maximum When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory

Working set trimming removes pages from processes that have pages in excess of their working set minimum Operating System Concepts 9.67 Silberschatz, Galvin and Gagne 2005 Solaris Maintains a list of free pages to assign faulting processes Lotsfree threshold parameter (amount of free memory) to begin paging

Desfree threshold parameter to increasing paging Minfree threshold parameter to being swapping Paging is performed by pageout process Pageout scans pages using modified clock algorithm Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan Pageout is called more frequently depending upon the amount of free memory available

Operating System Concepts 9.68 Silberschatz, Galvin and Gagne 2005 Solaris 2 Page Scanner Operating System Concepts 9.69 Silberschatz, Galvin and Gagne 2005 End of Chapter 9

Recently Viewed Presentations

  • Frequency words - Teachit Languages

    Frequency words - Teachit Languages

    Time markers tous les jours = every day beaucoup = a lot souvent = often quelquefois = sometimes de temps en temps = from time to time rarement = rarely
  • PowerPoint-esitys

    PowerPoint-esitys

    Online-kokouskutsun lähettämisen kautta Skype-yhteys mahdollinen, vaikka toisella osapuolella ei ole Skypeä tai Skypeä ei ole federoitu. Skypenfederointi kumppanin kanssa edellyttää kumppanilta Skype-ohjelmaa ja sopimista osapuolten tietohallintojen kesken sekä teknistä konfigurointia.
  • Intelligence

    Intelligence

    What IS intelligence?
  • Greece Origins of Greek Mythology Greek Mythology is

    Greece Origins of Greek Mythology Greek Mythology is

    The mythology of the ancient Greeks included a dazzling array of gods, demigods (half-human, half-god), monsters, and heroes. These figures inhabited a realm that stretched beyond the Greek landscape to the palaces of the gods on snow-capped Mount Olympus, as...
  • Do You Know What Your State is Sampling

    Do You Know What Your State is Sampling

    Sample Type (ISO CAP Sampling Agreement ) Sample Type (Bureau of Food Laboratories) Manufactured Foods Under the Purview of FDA. Sandwich. Environmental Samples of Manufactured Food (MF) production/storage and transport facilities.
  • Satire - msjuzwik.weebly.com

    Satire - msjuzwik.weebly.com

    A humorous picture that exaggerates or distorts certain qualities in order to create a ridiculous effect. Its true intent is not to criticize just one individual, but rather to ridicule an entire societal group or social practice. Mock-Heroic— Ridiculing or...
  • Cosmological Evolution of Blazars: new findings from the

    Cosmological Evolution of Blazars: new findings from the

    PowerPoint Presentation The BAT 3yr Sample Test of Evolution Parametric XLF Best-fit XLF for entire population Separating the populations The MeV Background The LAT view of blazars Some Key Properties Blazar Evolution in LAT Anti-hierarchical growth Galaxy-AGN co-evolution AGN-Cluster Interaction...
  • Physical activity and quality of life in people with psychosis

    Physical activity and quality of life in people with psychosis

    1) To investigate the relationship between physical activity and quality of life in people with psychosis. 2) To explore the experiences of physical activity in people with psychosis. 3) To explore the perceptions and experiences of mental health staff with...