Oxidation and reduction - Weebly

Oxidation and reduction - Weebly

1.5 Oxidation and Reduction Learning Outcomes Introduction to oxidation and reduction: simple examples only, e.g. Na with Cl2, Mg with O2, Zn with Cu2+. Oxidation and reduction in terms of loss and gain of electrons. Oxidising and reducing agents. The electrochemical series as a series of metals arranged in order of

their ability to be oxidised (reactions, other than displacement reactions, not required). Electrolysis of (i) copper sulfate solution with copper electrodes and (ii) acidified water with inert electrodes. (Half equations only required.) Oxidation and reduction Oxidation = addition of oxygen to a substance

C + O2 CO2 Reduction is loss of oxygen or addition of hydrogen CuO + H2 Cu + H2O examples Sodium + chlorine sodium chloride Na + Cl Na+ + Cl Na loses an electron [oxidised] Cl gains an electron [reduced]

Example 2 Magnesium +oxygen magnesium oxide Mg + O MgO Mg Mg+2 loses 2 electrons [oxidation] O O-2 gains 2 electrons [reduction] Example 3 Zinc +copper sulphate Zinc sulphate+ Copper

Zn + Cu+2 Zn+2 + Cu Zinc loses electrons (oxidised) Copper gains electrons (reduced) Oxidising agent A substance that causes oxidation in another substance Reducing agent

A substance that causes reduction in another substance.

Oxidation is loss of electrons; Reduction is gain of electrons CuO + H2 Cu + H2O CuO Cu+2 and O-2 Cu+2 Cu [gains 2 electrons] reduced H2 H2+2[loses 2 electrons] oxidised O-2 O-2 [ no change]

Oxidation numbers The charge that an atom has or appears to have assuming that the compound is ionic. Electrons always go the the most electronegative element Oxidation number rules 1

Elements on their own = 0 H2 = 0 Zn = 0 Cl2 = 0

Oxidation number rules 2 Ions = same as charge Cu +2 = +2 O-2 = -2

Cl-1 = -1 Oxidation number rules 3

Charges of all elements in a compound = 0 CuSO4 Cu = +2 S = +6 O4 = -8 [O = -2] Total = +2 +6 8 = 0 Oxidation number rules 4

Oxygen = -2 Exceptions are peroxides O = -1 [H2O2, Na2O2 ] OF2 O = +2, F = -1 Oxidation number rules 5 Hydrogen = +1 Exceptions are the metal hydrides NaH Na = +1, H = -1

Oxidation number rules 6 Halogens [ Cl, F, I, Br] are always 1 except when joined to more electropositice element Cl2O Cl = +1, O = -2 Oxidation number rules 7

In a complex ion the sum of all the charges = the chartge on the ion. SO4-2 S = +6, O4 = -8 [O = -2] +6 8 = -2 redox Oxidation is an increase on oxidation number

Reduction is a decrease in oxidation number. Electrochemical Series Electrochemical Series Elements listed in order of ability to be oxidised Metals

King [K] Neptune [Na] Caught [Ca] Many [Mg] Angry [Al] Zulus [Zn]

Fighting [Fe] Police [Pb] Constables [Cu] Having [Hg] Asthma [Ag] Attacks [Au] Zinc

Metals above hydrogen in the Reactivity Series react with acids to produce hydrogen gas. Potassium

Sodium Displacement of metals Displacement reactions occur when a metal from the electrochemical series is mixed with the ions of a metal lower down in the series. The atoms of the more reactive metal push their electrons on to ions of the less reactive metal.

Displacement More reactive metal displaces less reactive from a solution Mg + CuSO4 = MgSO4 + Cu Mg + Cu+2 Mg+2 + Cu Mg loses electrons (Oxidised) Cu+2 gains electrons (reduced)

Learning Outcomes Rusting of iron. Swimming-pool water treatment.

Use of scrap iron to extract copper. Electroplating. Purification of copper. Chrome and nickel plating. Cutlery. Rust Rust is the formation of iron oxides (usually red oxides), formed by the reaction of iron and oxygen in the presence of water or air moisture.

Oxidation Swimming pools The water in swimming pools is kept sterile by the addition of oxidizing agents, chlorine or chlorine compounds, which kill microorganisms by oxidation. The active agent is usually chloric(1) acid (HOCl). It may be formed in two ways 1. Direct chlorination of the water:

Cl 2(aq) +H2O (l) HOCl (aq) + Cl (aq) + H+ (aq) Note that when the Cl2 reacts with the water it is both oxidized and reduced Swimming pools 2. The addition of sodium chlorate(I) [sodium hypochlorite]: NaOCl (s) + H2O (l) Na+ (aq) + OH (aq) + HOCl (aq) Nowadays chlorine is not used, mainly on grounds of

safety. Pools are sterilized with chlorine compounds, which produce chloric(I) acid when they dissolve in water. These compounds act in essentially the same way as chlorine. Sodium chlorate(I) is one such compound. Use of scrap iron to extract copper. (Dissolved CuSO4) + (Metallic Fe) ==> (Dissolved FeSO4) + (Metallic Cu)

Electrolysis Chemical reaction caused by the passage of an electric current through a liquid known as the electrolyte

Definitions Electrolyte - liquid in which electrolysis takes place. Usually an ionic solution but it can also be a fused [melted] ionic compound

Anode - positive electrode. Positive because the battery sucks electrons out of it Cation - positive ion. Called cation because it is attracted to the opposite charge of the cathode.

Inert Electrodes - do not react with the electrolyte Graphite and Pt Active electrodes - react with electrolyte e.g. Copper and iron Cathode. Negative electrode. Negative because the battery pumps electrons into it.

Anion - negative ion. Called anion because it is attracted to the opposite charge of the anode Electrolysis Electroplating Electroplating Covering cathode in metal e.g. Cu by making it cathode in copper sulphate solution

Copper plating Copper Plating Anode reaction Cu(s) = Cu2+(aq) + 2e Anode loses mass as copper dissolves off Impurities [Au, Ag, Pt etc.] fall to bottom

Cathode reaction Cu2+(aq) + 2e- = Cu(s) Cathode gains mass as Cu is deposited on it Cu is 99.9% pure Learning Outcomes Mandatory experiment 1.2 (half equations only required, e.g. 2Br 2e Br2).

Demonstration of ionic movement. Demonstration of electrolysis of aqueous sodium sulfate (using universal indicator) and of aqueous potassium iodide (using phenolphthalein indicator) with inert electrodes. (Half equations only required.) Ionic Movement During electrolysis of a solution of Copper Chromate in

dil. Hydrochloric acid, positive ions (cations) are attracted to the negative electrode (cathode) and negative ions (anions) are attracted to the positive electrode (anode). If these ions are coloured, their movement may be observed visually. Examples of coloured ions include; copper(II) [Cu2+] - blue chromate(VI) [CrO42- ] yellow

Q & A to Ionic Movement Expt (1) What colour is the copper(II) chromate solution? Copper(II) chromate solution is an olive green colour.

(2) What colour is observed at the positive electrode after the power supply has been turned on for some time? A yellow colour is observed at the positive electrode. (3) What colour is observed at the negative electrode after the power supply has been turned on for some time? A blue colour is observed at the negative electrode.

(4) Explain in terms of the movement of ions why different colours are formed at each electrode. When the circuit is completed, positive copper ions (Cu2+) are attracted to the negative electrode. These ions have a blue colour. Similarly negative chromate(VI) ions (CrO42-) are attracted to the positive electrode. These ions are coloured orange.

(5) What is the function of the dilute hydrochloric acid? The dilute hydrochloric acid is required to complete the circuit. Electrolysis of Sodium sulphate Solution of Na2SO4 + universal indicator H+ ions are produced at the positive

electrode (oxidation of O2- in water) while OH- ions are produced at the negative electrode as the H+ in water is reduced to H2(g). Sodium Sulphate and Universal Indicator Electrolysis of Sodium Sulphate

Red is acid at the positive electrode 2H2O(l) O2(g) + 4H+(aq) + 4 e lose electrons = oxidation = anode Purple is base at the negative electrode H2O(l) + 2 e- H2(g) + 2OH-(aq)

gain electrons = reduction = cathode Electrolysis of Potassium Iodide Solution of KI + phenolphthalein Brown I2(s) forms at the positive electrode and some yellow/orange I3- forms in solution. At the negative electrode, H + is again reduced to H2(g) and the phenolphthalein turns pink due to the OH ions.

Electrolysis of Potassium Iodide Electrolysis of Potassium Iodide KI K+ + I Iodide loses electrons Brown iodine 2I- I2 + 2e- Anode, Oxidation H2O H+ + OH OH- is basic , Phenolphthalein Purple.

Recently Viewed Presentations

  • Analysis of bridge damage due to liquefaction on the Avon ...

    Analysis of bridge damage due to liquefaction on the Avon ...

    The stiffness issue I encountered was solved through the flowchart shown in Figure 5. This method of calculating the soil stiffness using the flowchart better represented the soil stiffness. I have been creating lower, median, and upper profiles for both...
  • Ideas for February 09 ANL-FNAL

    Ideas for February 09 ANL-FNAL

    At a lepton collider Many ideas, none realized and not easy Solving this: requires labs with universities. What are we (all) doing: Involvement and expertise in ZEUS, CDF, DZERO, CMS & ATLAS Pursuing both options for future: PFA based and...
  • EPAC New Member Orientation

    EPAC New Member Orientation

    EPAC Career Development Subcommittee (CDS) Engineer CV & CV Cover Page Webinar Fall 2019 * * * Introduction LT Kelliann Wachrathit Food and Drug Administration LCDR Kelly Kachurak, PE National Park Service Purpose of Webinar Review the recent edits to...
  • Preparing for Learning and Teaching at Oxford (PLTO)

    Preparing for Learning and Teaching at Oxford (PLTO)

    at Oxford (PLTO) A course for class tutors and College tutors Martin Galpin (based on slides by Dr Anne Crook, Oxford Learning Institute) ... PLTO for tutors • October 2018 OxCORT You will be expected to write a formal report...
  • Learning Series Health Information Privacy, Security, Vendor Management

    Learning Series Health Information Privacy, Security, Vendor Management

    according to a report released today by . PhishMe. That was up from 56 percent in December, and less than 10 percent every other month of last year. 80% of breaches are identified by outside entities (McAfee Labs Security Report...
  • Law Enforcement Equipment Program - TN.gov

    Law Enforcement Equipment Program - TN.gov

    Jeremiah Morton / Tom Pitt, Program Managers should be contacted for any questions you have concerning your grant. If you have any problems let one of them know as soon as possible. Tom . Scollon, Auditor. will be calling and...
  • From Integrated Academics to Integrated Practice - BIM in the ...

    From Integrated Academics to Integrated Practice - BIM in the ...

    BIM Collaborations at the University of Wyoming. Keith E. Hedges, AIA NCARB. Ecobuild America and AEC Science & Technology 2008 , (buildingSMART National Conference ), 9 December 2008, Washington, DC, USA
  • INTRODUCING ASQ:SE-2 Adapted from ASQ-3 and ASQ:SE-2 Training

    INTRODUCING ASQ:SE-2 Adapted from ASQ-3 and ASQ:SE-2 Training

    children that are abused or neglected.(Bruce D. Perry, M.D., Ph.D. Psychiatrist, Senior Fellow of the Child Trauma Academy in Houston, Texas). The Centers for Disease Control and Prevention (CDC) released its first comprehensive report on the mental health of children,...