Workplace Exposure Assessment and Field Monitoring Strategies

Workplace Exposure Assessment and Field Monitoring Strategies


contaminants are required for: - testing and validation of analytical methods; - calibrating instruments, and - toxicological and scientific studies. VALIDATED METHODS Validated sampling and analytical methods require generation of known standard concentrations in air. Range of one-half to two times the Permissible Exposure Limit (PEL) against

which to compare test results. Numerous electronic instruments are secondary measuring devices that require calibration with accurate known airborne concentrations. TWO SYSTEMS 1. Batch Mixture simple and convenient 2. Flow-Dilution System requires a

metered flow of diluent air and a source for supplying known flows of gases, vapors, or aerosols combined in a mixing device. Advantages: compactness, and large volumes at known low concentrations. BATCH MIXTURES Methods require relatively simple equipment

and procedures. Serious disadvantage - limited quantities of the mixture supplied. For reactive compounds, erroneously low concentrations may result from appreciable adsorption losses (50%) of the test substance on the walls of the chamber. Not use as primary standards without verification by chemical analysis. SEALED CHAMBERS Disperse accurately measured quantities of

test compound into sealed chamber containing clean air with mixing. Keep concentrations outside of the explosive limits. Withdraw from center through tube. Evaluate potential chamber leakage. BOTTLES

Pipet quantity of volatile liquid into the bottle on paper for evaporation. May be tumbled with foil for mixing. Withdraw mixture from bottom through a glass tube to avoid loss. Disadvantage is that concentration decreases during withdrawal as clean air enters [5% without serious loss]. Errors

avoided through use of other methods (i.e. bags, cylinders, etc.). Also known hydrocarbon concentrations needed for calibrating explosive-gas meters. Figure 16.1; Table 16.1. Figure 14.1; Table 14.1. Edition) (Third Edition) (Second

PLASTIC BAGS Many sizes/materials: Mylar, Teflon, Tedlar. Alternately clean and fill to evacuate/flush. Meter clean air into bag; add test substance to air stream; insure complete transfer of injected material; then, disconnect bag and plug/cap and mix. Conditioning process for bags; permeation. Advantages: (i.e. no dilution; transportable) and also losses from bags during storage (e.g. inert vs. reactive materials).

Figure 16.3 (14.3 Second Edition) PRESSURE CYLINDERS Good for hydrocarbons or carbon monoxide (CO) due to limited losses. Other substance losses by: polymerization, adsorption, or reaction with steel cylinder walls may change concentration. Pressure changes; avoid condensation; clean regulators; and/or coated aluminum cylinders

for long-term stability. Possibility of explosion of combustible substances; excessive heat causes errors. Recommended to purchase hazardous mixtures from compressed gas vendors; NIST Traceable Reference Material. CALCULATION INFORMATION

Values in appropriate UNITS; for constants in equation, numerical value corresponds to the UNITS required. Ambient pressures commonly measured barometer and expressed as mm of mercury; Air volumes measured in liters; and, Temperature as degrees Celsius.

with CALCULATION INFORMATION SI metric units: meter; kg, degrees C; bar/Pascal, etc.

1 M3 = 1000 Liters; 1 atmosphere = 760 mm Hg Ideal gas law; molar gas volume; partial vapor pressures

Concentrations mg/M3 vs. ppm (ug/L) Standard conditions: temperature of 25 degrees C and 760 mm Hg pressure. Equation 16-2 See: Third Edition: Chapter 16, pages 385 386 Second Edition: Chapter 14, pages 248 250.

Equation 16-3 Equations 16-4 and 16-4a Equation 16-5 Equation 16-6 and 16-6a FLOW-DILUTION SYSTEMS Air and test vapor, gas, or aerosol are continuously and accurately metered and

combined in mixing device. Primary advantage of compactness. Large volumes of gas mixture provided from continuous operation; rapidly change concentrations. Lesser explosive hazard due to small volumes. Only initial losses due to surfaces being fully saturated. Popular method.

GAS-METERING DEVICES The accuracy of final concentration depends on accuracy of measurements of air and test substance flows within system. Rotameters are commonly used, and mass flow meters, orifice meters, and critical orifices frequently employed. Consider use of pulsation damper for pumps and error determined based on flow meter. FLOW METER CALIBRATION CORRECTIONS

First due to calibration is dependent on the density, and in some cases, the viscosity of the gas flow, both of which are affected by ambient pressure and temperature; use absolute pressure. Depends on device. Second applied to convert the actual gas flow rate under ambient conditions to standard conditions; basis of ideal gas relationship. High altitude corrections are related to atmospheric pressures.

MIXING SYSTEMS Flow-dilution system is comprised of metered test substance source, metered clean-air source (required purification), and mixer to dilute test substance to low concentration required. Total flow of mixture must be equal to or greater than the flow needed. Desirable use of glass or Teflon parts. Maintain small pressure drops and operate system at close to atmospheric pressure. Also minimize dead volume for rapid

response time. Figure 16.4 all-glass mixer (3rd Edition) Figure 14.4 (2nd Edition) SOURCE DEVICES Various devices available to provide high concentrations of gases/vapors for dilution with pure air to achieve the concentration desired. Advantages Disadvantages

Selection of a source device depends on needs of application and available equipment. Figure 16.5 self-dilution device (3rd Edition) Figure 14.5 (2nd Edition) OTHER SOURCE DEVICES

Figures: 3rd Edition 2nd Edition Vapor Pressure 16.6/16.7 14.6/14.7 Motor Driven Syringes 16.8 14.8

Diffusion Source Systems 16.9 14.9 Porous Plug Sources 16.10 14.10 Permeation Tube 16.11/16.12/ 14.11/14.12 Source Devices 16.14

14.14 Miscellaneous Generation Systems e.g. electrolytic generator; aerated chemical solution mixture PERMEATION TUBE SOURCES Permeation tubes are useful sources for liquefiable gases and volatile liquids. Potential precision; NIST certifications. Calibrated at 25 C to within 1% of rate with 95% confidence.

When maintained in a dry controlled environment, can serve as primary standards. Commercial types span gas standard generator for instrument calibration; caution due to pressure!; environment carefully controlled; gravimetric calibrations.

Figure 16.14 - Permeation Tube Flow System Also See: Third Edition Chapter 16, pages 392 396. Second Edition Chapter 14, pages 254 - 257 FLOW-DILUTION CALCULATIONS Variables involved include: Source strength Desired concentration Flow rates

Examples of Calculations refer to Chapter 16 (2nd Edition Chapter 14) and also Appendix. SOURCE DEVICES FOR AEROSOLS Preparation of aerosols more complex and difficult than gas/vapor mixtures. Major consideration is size distribution. Commonly - lognormal distribution! Describes values characterized by a: Geometric Mean (GM) and a

Geometric Standard Deviation (GSD). PARTICLE SIZES Usual aerosol source devices supply range of sizes. Special types supply uniform-sized particles. If the geometric standard deviation is less than 1.1, the particles are considered homogeneous, or monodisperse. If material is a mixture, composition may vary with size. Consider surface electrostatic charges. Determined by study purpose and/or objectives. Proper design of exposure chamber needed to sample

aerosol e.g. aerosol/size distribution. AEROSOL PRODUCTION METHODS EXAMPLES: - Dry Dust Feeders agglomerate/packing; fibrous aerosols are difficult. - Nebulizers compressed air for liquid use. - Spinning Disc Aerosol Generators

monodisperse aerosols from liquids. - Miscellaneous Generation Systems duplicate natural formation of dusts. Multipurpose Calibration Components/Systems MULTIPURPOSE CALIBRATION COMPONENTS AND SYSTEMS Commercially available for testing analytical methods and calibrating instruments.

Standards Completion Program 516 methods evaluated by NIOSH contract labs. Each set up a multipurpose system for simultaneously producing several test concentrations in the desired range. APPENDIX A CALCULATIONS A range of temperature and pressure changes can be

tolerated before corrections are applied to the volume or air sampled during an exposure assessment. All OELs and environmental exposure standards and limits are expressed at 25 degrees C and 1 atmosphere (760 mm Hg), defined as normal temperature and pressure (NTP). Therefore, corrections needed for meaningful comparisons related to published exposure limits. Equation A16.1 Ideal Gas Eq.

TEMPERATURE AND PRESSURE EFFECTS Apply temperature and pressure differences between NTP and field conditions into program to monitor exposure to air contaminants. Air volume changes if different from standard temperature and pressure (NTP). To compare air monitoring data with OELs, make corrections of volume of air sampled in the field to NTP standard condition.

TEMPERATURE AND PRESSURE EFFECTS ON VOLUME Gas laws: Boyle, Charles, Gay-Lussac, and Dalton laws for basis of understanding effects. Assume that air behaves as an ideal gas. Small error (less than 0.5% at

concentrations less than 5000 ppm by volume). Enables occupational hygienists to calculate the concentration of air contaminants in the workplace and the

ambient environment. RANGE OF TEMPERATURES FOR VOLUME CORRECTION Temperature correction is adjustment of volume by difference between the field sampling temperature and the desired standard temperature of 25 degrees C (298 degrees K). Volume at standard condition (NTP) either increases or decreases by the ratio of the field and standard temperature (Ts over Tf).

Evaluate to determine need for correction. RANGE OF PRESSURES FOR VOLUME CORRECTION Pressure correction is adjustment of volume by difference between the field sampling pressure and the desired standard pressure of 1 atmosphere (760 mm Hg). Volume at standard condition (NTP) either increases or decreases by the ratio of the field and standard pressure (Pf over Ps). Evaluate to determine need for correction.

TEMPERATURE AND PRESSURE CORRECTION TO MASS Understand relationship - calculate the concentration in parts per million from mass per volume concentration (mg/M3). Temperature and pressure correction applied to the air sample volume in cubic meters and not to molar gas volume. Same concentration in ppm is independent of temperature and pressure since calculation on volume-per-volume basis.

Recently Viewed Presentations

  • Copyright  2011 Pearson Education, Inc. Publishing as Longman

    Copyright 2011 Pearson Education, Inc. Publishing as Longman

    Title: Slide 1 Author: ualimel Last modified by: ualimel Created Date: 4/27/2010 1:55:33 PM Document presentation format: On-screen Show Company: PEARSON
  • SPM Course - Wellcome Trust Centre for Neuroimaging

    SPM Course - Wellcome Trust Centre for Neuroimaging

    FIL SPM Course Oct 2012Voxel-Based Morphometry. Ged Ridgway, FIL/WTCN. With thanks to John Ashburner. Overview. Unified segmentation recap. Voxel-based morphometry (VBM) Spatial normalisation with Dartel. Tissue segmentation.
  • Modeling Future Forest Fragmentation - UConn CLEAR

    Modeling Future Forest Fragmentation - UConn CLEAR

    Consists of six towns: Bolton, Marlborough, Hebron, East Hampton, Colchester, East Haddam. Study area contains more than 90% if the Salmon River watershed. Coverage of the watershed is important since the simulations may be used to analyze impacts on water...
  • OP ART - Pearl Quick

    OP ART - Pearl Quick

    Victor Vaserely Victor Vaserely Victor Vasarely Victor Vaserely Victor Vaserely Victor Vaserely Victor Vaserely Victor Vaserely Victor Vaserely Victor Vaserely Victor ...
  • Indiana University School of Informatics

    Indiana University School of Informatics

    School of Informatics at Indiana University Sun Yat-sen University Guangzhou China ... in services and data allowing anybody to store their data and to produce "their" view Some think that University Library of future will curate/store data of their faculty...
  • Diapositiva 1 -

    Diapositiva 1 -

    What is Shared Decision-making? Shared decision-making (SDM) is a practice in which patients and clinicians work in partnership to choose treatments, management packages, support packages, or tests based on the patient's informed preferences and clinical evidence.
  • Enterprise AIRSpeed

    Enterprise AIRSpeed

    Who is from the Army? Air Force? DON? ICP? DLA? NAVAIR?? Picture of AIRSpeed tools working together for optimal performance/ support to the Fleet. TOC used to design the system/ identify constraints Lean to reduce the TRR Six Sigma to...
  • Virginia's Water Resources - Loudoun County Public Schools

    Virginia's Water Resources - Loudoun County Public Schools

    If there is a creek or river nearby that would be the beginning of that place's watershed address. If there is a bigger creek or river or bay that it flows into, that will be the second part. When you...